

THE NOVEL CYCLOPROPAPYRROLOINDOLE(CPI) BISALKYLATORS BEARING 3,3'-(1,4-PHENYLENE)DIACRYLOYL GROUP AS A LINKER

Yasumichi Fukuda*, Shigeki Seto, Hirosuke Furuta, Hiroyuki Ebisu, Yasuo Oomori

Central Research Laboratories, Kyorin Pharmaceutical Co. Ltd., Mitarai, Nogi, Tochigi 329-0114, Japan

Shiro Terashima*

Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229-0012, Japan

Received 21 May 1998; accepted 23 June 1998

Abstract: The novel cyclopropapyrroloindole(CPI) bisalkylators were synthesized and their antitumor activity was evaluated. Among these derivatives, AT-760 (5a) in which the two 3-methoxycarbonyl-2-trifluoromethylCPI (MCTFCPI) moieties are connected with a 3,3'-(1,4-phenylene)diacryloyl group, was found to exhibit more prominent cytotoxicity and antitumor activity than U-77,779 (bizelesin) (1).© 1998 Elsevier Science Ltd. All rights reserved.

The cyclopropapyrroloindole(CPI) bisalkylator, U-77,779 (bizelesin) (1), showing promising antitumor activity has been reported, in which the two alkylating moieties are connected with a rigid linker, 1,3-bis(2-carbonyl-1*H*-indol-5-yl)urea group. Recently, we reported the synthesis and antitumor activity of the novel 3-methoxycarbonyl-2-trifluoromethylCPI (MCTFCPI) bisalkylator 2. In 2, the two MCTFCPI groups are connected with a rigid linker, 5,5'-bis(2-carbonyl-1*H*-indole) group, and this bisalkylator 2 showed more excellent antitumor activity than 1 (Figure 1).²

Figure 1

Based on these studies, it was uncovered that the length of rigid linker gives a significant influence on cytotoxicity and antitumor activity rather than the type of rigid linker.² Therefore, with an aim to explore the novel CPI bisalkylators showing even more excellent antitumor activity than 1, we designed and synthesized the various CPI bisalkylators bearing 3,3'-(1,4-phenylene)diacryloyl group as a novel rigid linker whose length is shorter than that in 2. Among them, AT-760 (5a) was found to exhibit more excellent *in vitro* and *in vivo* activity than 1. Herein, we wish report on the synthesis and antitumor activity of the various CPI bisalkylators carrying 3,3'-(1,4-phenylene)diacryloyl group as a linker.

According to the procedure reported in the preceding paper,² we completed the synthesis of novel CPI bisalkylators $5a \sim f$ by coupling two equivalents of the optically active phenols $(S)-4a \sim f$ with one equivalent of 3,3'-(1,4)-phenylene)diacrylic acid (Scheme 1). The phenols $(S)-4a \sim f$ were derived from optically active N-protected indolines $(S)-3a \sim f^3$ by deprotection.

With the novel bisalkylators $5a \sim f$ in hand, they were subjected to cytotoxicity assay (*in vitro*) against HeLaS3 human uterine cervix carcinoma and antitumor activity assay (*in vivo*) against Colon 26 murine adenocarcinoma. As shown in **Table 1**, AT-760 (5a) having two MCTFCPI rings exhibited superior cytotoxicity and antitumor activity to 1.⁴ Furthermore, therapeutic index (MTD/TGI₅₀) of 5a was obviously superior to those of 1 and 2. Accordingly, it appeared evident that 5a shows less toxicity than 1 and 2, respectively. Further pharmacological investigations on 5a are in progress.

Table 1. Cytotoxicity Against HeLaS3 Human Uterine Cervix Carcinoma and Antitumor Activity Against Colon 26 Murine Adenocarcinoma

	5a	5b	5c	5d	5e	5f	1	2
IC ₅₀ (ng/ml) ^{a)}	0.0027	0.00046	0.00035	0.023	0.0013	0.072	0.060	0.0049
TGI ₅₀ (μg/kg) ^{b)}	0.254	0.891	0.757	100	1.41	3.80	3.72	0.300
MTD ^{c)} /TGI ₅₀	30.7	8.8	10.3		5.5	8.2	8.4	3.3

a) Drug concentration required to inhibit the growth of HeLaS3 cells by 50%.

Acknowledgments:

We are grateful to Dr. S. Suzue, Kyorin Pharmaceutical Co. Ltd., for many valuable suggestions and encouragement.

References and Notes

- 1. Mitchell, M. A.; Kelly, R. C.; Wicnienski, N. A.; Hatzenbuhler, N. T.; Williams, M. G.; Petzold, G. L.; Slightom, J. L.; Siemieniak, D. R. J. Am. Chem. Soc., 1991, 113, 8994.
- 2. Fukuda, Y.; Furuta, H.; Kusama, Y.; Ebisu, H.; Oomori, Y.; Terashima, S. Bioorg. Med. Chem. Lett., 1998, 8, 1387.
- 3. For the synthesis of 3a-f, see, Fukuda, Y.; Furuta, H.; Shiga, F.; Oomori, Y.; Kusama, Y.; Ebisu, H.; Terashima, S. Bioorg. Med. Chem. Lett., 1997, 7, 1683. (for 3a), ref. 4. (for 3b,c and e), Fukuda, Y.; Terashima, S. Tetrahedron Lett., 1997, 38, 7207. (for 3d), Fukuda, Y.; Furuta, H.; Kusama, Y.; Ebisu, H.; Oomori, Y.; Terashima, S. Heterocycles, in submitting. (for 3f).
- 4. U-77,779 (bizelesin) (1) used as the standard compound was synthesized in our laboratories. Fukuda, Y.; Furuta, H.; Shiga, F.; Asahina, Y.; Terashima, S. *Heterocycles*, 1997, 45, 2303.

b) Colon 26 (106/mouse) cells were inoculated s.c. into male CDF1 mice on day 0. Drugs were administered i.v. on day 7. The 50% tumor growth inhibition as compared with the untreated group.

c) Maximum dose within 10% body weight loss (µg/kg).